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Abstract

Motivated by the theory of quantum waveguides, we investigate the spectrum of the Laplacian,
subject to Dirichlet boundary conditions, in a curved strip of constant width that is defined as a
tubular neighbourhood of an infinite curve in a two-dimensional Riemannian manifold. Under the
assumption that the strip is asymptotically straight in a suitable sense, we localise the essential
spectrum and find sufficient conditions which guarantee the existence of geometrically induced
bound states. In particular, the discrete spectrum exists for strips in non-negatively curved manifolds
which are studied in detail. The general results are used to recover and revisit the known facts about
quantum strips in the plane. As an example of strips in non-positively curved manifolds, we consider
strips on ruled surfaces.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The theory of quantum waveguides constitutes a beautiful domain of mathematical
physics in which one meets an interesting interaction of analysis and geometry. Recall
that the configuration spaceΩ of a waveguide is usually modelled by tubular neighbour-
hoods of infinite curves inRd , d = 2, 3 (quantum strips, tubes), or surfaces inR

3 (quantum
layers), while the dynamics is governed by the Laplace operator with Dirichlet boundary
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conditions. It is due to an admirable progress of mesoscopis physics that such models do
really represent actual nanostructures which are produced in the laboratory nowadays. We
refer to[6,22] for the physical background and references.

A common, particularly interesting property of these systems is that the curvature of the
reference curve or surface may produce bound states of the Laplacian below the essential
spectrum. This phenomenon was demonstrated first in a rigorous way by Exner and Šeba
for curved strips in the plane[10]. Numerous subsequent studies improved their result
and generalised it to space tubes. For more information and other spectral and scattering
properties, see the review paper[6] and references therein. The evidently more complicated
case of quantum layers was investigated quite recently in[7–9].

Up to this time, the ambient manifold of the quantum waveguide has been usually iden-
tified with a flat Euclidean spaceRd , d = 2, 3. This restriction is obviously due to the
physical reasons, however, at least from the mathematical point of view, one may be inter-
ested equally in the situations when it is a general Riemannian manifoldA of dimension
d ≥ 2. The principal interest of the present work is to initiate this study by considering the
simplest non-trivial case,d = 2, when the configuration spaceΩ is a tubular neighbourhood
of constant radiusa > 0 about an infinite curveΣ on a surfaceA.

Let us describe the contents of the paper. The strip configuration spaceΩ itself is properly
defined inSection 2.1. Through all the paper, we suppose that the strip is globally parame-
terised by a system of geodesic coordinates based on the reference curveΣ . In accordance
with [15], we call themFermi coordinates[11], although they had already been considered
by Gauss. A comprehensive discussion of such a coordinate system has been given by Fiala
[12], in order to prove some isoperimetric inequalities; see also[17]. A modern definition
of Fermi coordinates of tubes about a submanifold of a general Riemannian manifold can
be found in[15]. We introduce them for our purposes inSection 2.2.

In Section 2.3, the HamiltonianH of our system is identified with the Friedrichs extension
of the Laplacian,−∆ onL2(Ω), which is expressed in Fermi coordinates and defined ini-
tially onC∞

0 (Ω). The construction is based on the quadratic form approach of[4, Chapter 6].
Two trivial classes of quantum strips are then mentioned inSection 2.4. If the curvature of
the ambient space is identically equal to zero onΩ, the strip is calledflatand the spectrum of
H coincides with the spectrum of strips in the plane,[6]. A generalisation of straight strips
in the plane is represented bygeodesicstrips, for which the reference curve is in addition
a geodesic. In that case, we find that the spectrum is the interval [κ2

1, ∞), whereκ1 :=
π/2a.

Section 3is devoted to a heuristic analysis of the HamiltonianH . Using a unitary trans-
formation, it can be identified with a Schrödinger-like operator with a potential expressed
by means of the metric ofΩ. The latter operator acquires a very instructive form in the
formal limit when the width of the strip tends to zero. In particular, we reveal an effective
potential which is given by a combination of curvatures ofΣ andA. The result is compared
with the case of strips in the plane and used as a motivation for the spectral analysis ofH

in the subsequent sections.
In Section 4, we localise the essential spectrum under the assumption that the strip is

asymptotically geodesicin a suitable sense. Using a Neumann bracketing argument together
with the minimax principle, we find inTheorem 1that the threshold ofσess(H) is then
bounded from below byκ2

1.
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Section 5is devoted to the analysis of the spectrum below the energyκ2
1. Using a vari-

ational technique standard in the theory of quantum waveguides, we find two sufficient
conditions which guarantee that this part of spectrum is not empty, cf.Theorems 2 and 3.
These conditions require that the strip is non-negatively curved in an integral sense; see
(21) for the precise meaning of the statement. Combining these results withTheorem 1, we
arrive atCorollary 1which contains the main result of this paper concerning the existence
of a non-trivial discrete spectrum in quantum strips.

Since the condition(21)is clearly satisfied for non-negatively curved strips, this situation
is investigated in detail inSection 6. We simplify some assumptions, we have put on the
geometry ofΩ, and sum up the spectral results inTheorem 4. Apart from a significant
generalisation, it recovers and revisits the known results for the quantum strips in the plane.

To the best of our knowledge, it is for the first time when the spectrum of a curved
strip embedded in a non-trivial manifold has been investigated. An exception is the paper
[2], where Clark and Bracken deal with a special class of quantum strips inR

3, which
are made up from segments perpendicular to an infinite space curveΣ . They introduce the
Hamiltonian in a formal way, derive the effective potential mentioned above and make some
conjectures on the influence of the torsion ofΣ on the spectrum, however, do not perform
any spectral analysis itself. Actually, their paper is a preliminary to[1], where bound states
in space quantum waveguides with torsion are investigated. The strip of[2] is a part of a
ruledsurfaceA based onΣ ; we examine this situation briefly inSection 7.

We conclude the paper bySection 8, where some open problems and directions of a future
research are mentioned. A particularly interesting question concerns possible applications
to physics.

2. Preliminaries

2.1. Definitions

LetA be a non-compact two-dimensional Riemannian manifold of classC2 and letK
denote its Gauss curvature. We require thatK is a continuous function onA, which holds if
A is of classC3 or if it is embedded inR3. Even if it is not necessary for our construction,
we shall assume thatA is geodesically complete.

LetΣ be a simple, infinite curve of classC2 embedded inA and letk denote its curvature.
(We do not require thatA is embedded inR3, however, if it is that case,k means the geodesic
curvature ofΣ .) We may assume thatΣ is given by the image of the mappingp : R → A
such that|p′| = 1. It represents theC2-parameterisation of the curve by its arc length. We
note thatk is a continuous function onΣ .

Let a > 0 andI := (−a, a). The stripΩ of width 2a is defined as thea-tubular
neighbourhood ofΣ in A

Ω := {x ∈ A|dist(x, Σ) < a}. (1)

As usual, the distance dist(x, Σ) means here the length of the minimal geodesic joiningx

with Σ . We want to introduce the Laplacian inΩ and investigate its spectrum. Our strategy
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is to map the curved strip(1) onto the straight one,Ω0 := R × I , by the use of Fermi
coordinates which are defined in the following section.

2.2. Fermi coordinates

We denote byTxA the tangent space toA at x ∈ A and recall that the exponential
map, expx : TxA → A, is the identificationt �→ γt (1), whereγt is the unique geodesic
(parameterised by arc length) inA with γt (0) = x andγ ′

t (0) = t . We define

L : R
2 → A : {(s, u) �→ expp(s)(un(s))|n ∈ NpΣ}, (2)

whereNpΣ denote the orthogonal complement ofTpΣ in TpA, and always assume that

(H1) L : Ω0 → Ω is a diffeomorphism for somea > 0.

Then the inverse ofL determines the system of Fermi “coordinates”(s, u) and one has

Ω = L(Ω0). (3)

Remark 1. Hereafter, we shall use the standard component notation of tensor analysis
with the range of indices being 1, 2 and associate them with Fermi coordinates via the
identification,(1, 2) ↔ (s, u). The partial derivatives will be denoted by commas. From
now on the curvatureK shall be considered as a function of Fermi coordinates(s, u); k is
a function ofs.

The metric tensor ofΩ in Fermi coordinates is given byGij := 〈L,i ,L,j 〉, where “〈·, ·〉”
denotes the inner product induced by the Riemannian metric onA. Note thats �→ L(s, u)

traces the curves parallel toΣ at a fixed distance|u| and that the curveu �→ L(s, u) is a
unit-speed geodesic orthogonal toΣ for any fixeds. The generalised Gauss Lemma,[15,
Section 2.4], implies that these curves meet orthogonally and one arrives at the diagonal
form of the metric tensor

(Gij ) =
(

f (s, u)2 0

0 1

)
. (4)

According to[16,18] the functionf is continuous and has continuous partial derivatives
f,u, f,uu satisfying the Jacobi equation

f,uu + K f = 0 withf (·, 0) = 1, f,u(·, 0) = k. (5)

The determinant of the metric tensor,G := det(Gij ) = f 2, defines through dΩ :=
G(s, u)1/2 ds du the surface element of the strip.

Remark 2. If Σ was a compact curve, then the condition (H1) could always be achieved
for sufficiently smalla. Recall also that the same holds true for infinite strips in the plane if
one assumes in addition thatΩ does not overlap[6]. In our case, the situation is analogous.
The inverse function theorem implies thatL : Ω0 → Ω is a local diffeomorphism provided
f is uniformly strictly positive and bounded, cf. posterior assumption (H2). This can be
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achieved fora small enough becausef (·, 0) = 1. The condition (H1) will be then fulfilled
if we do not allow in addition an overlapping of the strip.

We needed the ambient manifoldA just in order to define the strip by means of(1) or
(3). Once the construction is over, we may forget about the rest ofA and consider its part
Ω only. It will be our configuration space. Note that the closure,Ω̄, is a manifold with
boundary.

2.3. Hamiltonian

After geometric preliminaries, let us define the Hamiltonian of our system. We consider
a non-relativistic quantum particle within the two-dimensional regionΩ of impenetrable
boundary. As usual, we put�

2/2m = 1, where� denotes Planck’s constant andm the mass
of the particle. Then the Hamiltonian could be identified with the Laplace operator,−∆

on L2(Ω), with an appropriate domain of functions which vanish on∂Ω. However, we
proceed differently and always understand this Laplacian in the generalised (form) sense.

In detail, using Fermi coordinates, we shall identify the Hilbert spaceL2(Ω) withH :=
L2(Ω0, dΩ). Let us consider the quadratic form onH given by

Q(ψ, φ) := (ψ,i, Gij φ,j )H, DomQ := W
1,2
0 (Ω0, dΩ), (6)

where(Gij ) is the inverse of(Gij ). Assuming that the metric is uniformly elliptic in the
sense that the condition

(H2) ∃c± > 0 ∀(s, u) ∈ Ω0 : c− ≤ f (s, u) ≤ c+

is valid, it follows that the formQ is densely defined, non-negative, symmetric and closed
on its domain. Consequently, there exists a non-negative self-adjoint operatorH associated
toQ which satisfies DomH ⊂ DomQ. It will be our Hamiltonian. We refer to[4, Chapter 6]
for more details and proofs concerning the above construction.

Remark 3. Although H is formally equal to the operator−G−1/2∂iG
1/2Gij ∂j , i.e. the

Laplacian,−∆, expressed in Fermi coordinates, we shall be particularly concerned not to
assume that the metric is differentiable. If, however, the metric is sufficiently smooth then
the operatorH is indeed given by this expression with Dirichlet boundary conditions in the
classical sense. We stress that under our assumptions,f is known to be differentiable w.r.t.
u only.

2.4. Flat and geodesic strips

Assume that the strip isflat in the sense that the curvatureK is equal to zero everywhere
onΩ, i.e.K ≡ 0. Then the Jacobiequation (5)has the exact solution

f (s, u) = 1 + u k(s). (7)

This is a well-known result for the strips in the plane, however, we note that the same holds
as well for the strips on cylinders, on surfaces of the shape of corrugated iron, etc. Since
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the Hamiltonian is expressed via the metric which depends onf only, we may immediately
adapt to the flat strips all the results which has been previously derived for quantum strips
in the plane[6]. In particular, the discrete spectrum will always exist as soon as the strip is

non-trivially curved,k �≡ 0, and asymptotically straight,k
∞→0.

On the contrary, if (in addition toK ≡ 0) the reference curve is a geodesic, i.e.k ≡ 0,
then the functionf equals 1 identically, and therefore

H = H0 := −∆
Ω0
D on L2(Ω0).

Consequently, the discrete spectrum is empty and

σ(H0) = σess(H0) = [κ2
1, ∞), (8)

whereκ2
1 denotes the first eigenvalue of the Dirichlet Laplacian on the transverse section,

−∆I
D. These systems generalises the straight strips in the plane and will be called here

geodesic. We will use them as a comparative class of quantum strips whose spectrum is
known explicitly.

The operator−∆I
D occurs often in the present work. We note that it is nothing else than

the quantum Hamiltonian of the one-dimensional infinite square well of width 2a. In what
follows we shall use its family of eigenfunctions{χn}∞n=1 which is given by

χn(u) :=




√
1

a
cosκnu if n is odd,√

1

a
sinκnu if n is even,

(9)

whereκ2
n := (κ1n)2 with κ1 := π/2a are the corresponding eigenvalues. The ground-state

χ1 will be very important for us because it represents a generalised eigenvector of the
geodesic strip corresponding to the threshold of the essential spectrum(8).

3. Motivation

This part is devoted to heuristic considerations in order to motivate the spectral analysis
of the Hamiltonian in the following sections. It is possible, but beyond the scope of this
paper, to examine the conditions under which the thin-width limit process below is justified.
Since we use it just for motivation purposes, we shall do the limit in a formal way only. To
this end (but only through this section!), we shall assume thatf is an analytic function.

Let us recall first the observation which initiated the attempts to prove the existence of
bound states in quantum strips in the plane, cf.[3,19,21,26]. The Hamiltonian of such a strip
is unitarily equivalent to a Schrödinger-like operator with a potential expressed by means of
the curvaturek of the reference curve and the transverse coordinateu ∈ I . Making formally
the thin-width limit,a → 0, in the expression for the transformed Hamiltonian, the potential
becomes equal to−k2/4. The latter always represents anattractiveinteraction as soon as

the strip is non-trivially curved,k �≡ 0, and asymptotically straight,k
∞→0. Consequently, the

limit operator possesses bound states below its essential spectrum. As we have mentioned



D. Krejčiř ı́k / Journal of Geometry and Physics 45 (2003) 203–217 209

in Section 1, one proves that these bound states “survive” also in the actual quantum strips
of non-zero widths.

In order to find the effective potential in our situation, we introduce the unitary transfor-
mationU : H→ L2(Ω0) given byψ �→ G1/4ψ , which leads to

H̃ := UHU−1 = −G−1/4∂iG
1/2Gij ∂jG−1/4. (10)

CommutingG−1/4 with the gradient components, we cast this operator into a form which
has a simpler kinetic part but contains a potential,

H̃ = −∂iG
ij ∂j + V with V := (Gij J,j ),i + J,iG

ij J,j , (11)

whereJ := ln G1/4. This expression is valid for any smooth metricGij . Employing the
particular form(4) of our metric tensor together with the Jacobiequation (5), we get

V = 1

f 2

[
1

2

f,ss

f
− 5

4

(
f,s

f

)2
]

− 1

2
K − 1

4

(
f,u

f

)2

. (12)

To make the limit when the width of the strip, 2a, tends to zero, we note first that the function
f admits, as a solution of(5), the following asymptotic expansion w.r.t.u:

f (s, u) = 1 + u k(s) − 1
2u2 K(s, 0) + r(s, u), (13)

where the remainderr isO(u3) for any fixeds. Putting this expansion into(12) and (11),
and making the limitu → 0 in the expression forV andGij , we see that, up to higher order
terms inu ∈ I , the operatorH̃ decouples formally into the direct sum of the operators

−∆R + Veff on L2(R) and − ∆I
D on L2(I ), (14)

where

Veff(s) := −1
4k(s)2 − 1

2K(s, 0). (15)

The first term inVeff is identical with the effective potential for the thin strips in the plane,
while the second one reflects the fact that our strip is in addition embedded in a curved
manifold now.

Assume that the curvaturesk andK vanish at the infinity of the strip. In distinction
to the planar case, the potential(15) may not represent an attractive interaction for any
non-trivially curved strip. (For, it suffices to consider the strip constructed over a geodesic,
k ≡ 0, on a surface of negative curvature,K < 0.) Nevertheless, if the curvatureK is, say,
non-negative (andk �≡ 0 providedK ≡ 0), then the potentialVeff always represents an
attractive interaction. Consequently, the direct sum of the limit operators of(14)possesses
bound states below its essential spectrum. The aim of this paper is to state an analogous
sufficient condition which guarantees the existence of a non-trivial discrete spectrum for
the actual HamiltonianH of the strips of non-zero widths.

To conclude this section, we stress again that the thin-width-limit procedure we have
used to derive the operators(14)and the effective potential(15)of thin strips is formal only.
(One reason is that the transverse operator−∆I

D gives rise to infinite normal oscillations
asa → 0.) Nevertheless, we note that a similar thin-neighbourhood limit was performed
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rigourously by Froese and Herbst[13] in efforts to treat the time evolution around a compact
n-dimensional submanifold ofRn+m, m ≥ 1. There the confinement was realised by a
harmonic potential transverse to the manifold and the limit was carried out by means of a
dilation procedure followed by averaging in the normal direction. The situation whenR

n+m

is replaced by a Riemannian manifold of the same dimension was treated formally in[23];
there one can also recover the effective potential(15).

4. Essential spectrum

In Section 2.4, we have seen that the essential spectrum of a geodesic strip (k, K ≡ 0)
starts by the first eigenvalueκ2

1 of the transverse operator−∆I
D. Since the metric tensor is

the identity matrix (f ≡ 1) in this case and the essential spectrum is determined by the
behaviour of the metric at infinity only, we expect that the same will hold true if a curved
quantum strip behaves like a geodesic stripasymptoticallyin the sense

(H3) f
∞→1.

By the symbol “
∞→” we mean precisely the uniform limit w.r.t.u as|s| tends to+∞, i.e.

lim
s0→+∞ sup

(s,u)∈Ω0,|s|>s0

|f (s, u) − 1| = 0.

Remark 4. Note that the assumption (H3) together with (H1) implies the condition (H2)
for any half-width less thana. In detail, sincef is continuous it is bounded locally, and
cannot be equal to 0 onΩ0 because of (H1). The asymptotic assumption (H3) then controls
the uniform behaviour off at infinity.

Theorem 1. Assume(H1), (H2),and suppose that the strip is asymptotically geodesic, i.e.
(H3). Then

infσess(H) ≥ κ2
1 .

Proof. The idea is inspired by the proof of Theorem 4.1 in[8]. For anys0 > 0, let us
defineΩ0,int := (−s0, s0) × I andΩ0,ext := (Ω0 \ Ω0,int)

◦. The images ofΩ0,int and
Ω0,ext by the mappingL divide the stripΩ into an interior and exterior part, respectively.
Imposing the Neumann boundary condition at the two curves separating these sets, we
arrive at the decoupled HamiltonianHN = HN

int ⊕ HN
ext. More precisely, it is obtained as

the operator associated with the quadratic formQN acting as(6), however, with the domain
DomQN := DomQN

int ⊕ DomQN
ext, where

DomQN
ω := {ψ ∈ W1,2(Ω0,ω, dΩ)|ψ(·, ±a) = 0}, ω ∈ {int, ext}.

The corresponding quadratic formsQN
ω act like Q, however, on appropriately restricted

Hilbert spacesHω := L2(Ω0,ω, dΩ). SinceH ≥ HN and the spectrum ofHN
int is purely

discrete[4, Chapter 7], the minimax principle[24, Section XIII, 1]gives the estimate

infσess(H) ≥ infσess(H
N
ext) ≥ infσ(HN

ext).
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Hence it is sufficient to find a lower bound onHN
ext. However, by virtue of(6) and (4), we

have for allψ ∈ DomQN
ext:

QN
ext[ψ ] ≥ ‖ψ,u‖2

Hext
≥ ( inf

Ω0,ext
G1/2)‖ψ,u‖2

L2(Ω0,ext)
≥ ( inf

Ω0,ext
G1/2)κ2

1‖ψ‖2
L2(Ω0,ext)

≥ ( inf
Ω0,ext

G1/2)( sup
Ω0,ext

G1/2)−1κ2
1‖ψ‖2

Hext
.

In the third inequality, we have used the bound−∆I
D ≥ κ2

1. The obtained estimate onQN
ext

is valid for any metric of the block form(4) even if the functionf is replaced by a matrix.
However, here we haveG1/2 = f and the infimum and supremum tend to 1 ass0 → ∞
by the assumption (H3). The claim then easily follows by the fact thats0 can be chosen
arbitrarily large. �

Remark 5. This threshold estimate is sufficient for the subsequent investigation of the
discrete spectrum which is our goal in this paper. In order to prove the opposite estimate,
one may employ a Dirichlet bracketing argument instead of the Neumann one we have
used. Next, to show that all energies aboveκ2

1 belong to the spectrum, one has to construct
an appropriate Weyl sequence. This can be done under an assumption stronger than (H3)
which involves derivatives off as well.

5. Discrete spectrum

The aim of this section is to prove two conditions sufficient for the Hamiltonian to
have a non-empty spectrum belowκ2

1. Since we have shown that the essential spectrum
does not start below this value for the asymptotically geodesic strips, the conditions yield
immediately the existence of curvature-induced bound states. The proofs here are based on
the variational strategy of finding a trial functionψ from the form domain ofH such that

Q̃[ψ ] := Q[ψ ] − κ2
1‖ψ‖2

H < 0. (16)

The idea which goes back to Goldstone and Jaffe[14], is to construct a trial function by
deformingχ1 of (9), which represents a generalised eigenfunction of energyκ2

1 for the
geodesic strip. In particular, if the strip is geodesic, thenQ̃[χ1] = 0. The latter has to be
understood in a generalised sense becauseχ1 is not integrable w.r.t.s and as such it does
not belong to DomQ. Let us use this function in the curved case. We start with a formal
calculation:

Q̃[χ1] = (χ1,s , f −1χ1,s) + (χ1,u, f χ1,u) − κ2
1(χ1, f χ1) = −(χ1, f,u χ1,u)

= 1
2(χ1, f,uu χ1) = −1

2(χ1, Kfχ1), (17)

where the inner product is in the Hilbert spaceL2(Ω0). The first equality is the definition
of Q and‖ · ‖H, in the second one we have used the fact thatχ1 does not depend ons and
integrated by parts w.r.t.u, in the third one we have integrated by parts once more, and the
last equality follows by(5). The resulting integral will be well-defined if we assume

(H4) K ∈ L1(Ω0, dΩ).
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Hence, we obtain immediately.

Theorem 2. Assume(H1), (H2), (H4),and suppose that

(χ1, Kχ1)H > 0. (18)

Then

inf σ(H) < κ2
1 .

Proof. It remains to regulariseχ1 in such a way that the formal result(17)would be justified
in a limit. For anyn ∈ N \ {0}, we defineψn := ϕnχ1, where, e.g.,

ϕn(s) :=




1 if |s| ∈ [0, n),

2n − |s|
n

if |s| ∈ [n, 2n),

0 if |s| ∈ [2n, ∞).

Althoughψn is not smooth, it is a continuous function of compact support inΩ0 satisfying
a Lipschitz condition and as such it as an admissible trial function from DomQ; cf. [4,
Theorem 6.1.5]. Since the variables(s, u) are separated inψn, we arrive easily at

Q̃[ψn] = (ψn,s, f −1ψn,s) − 1
2(ψn, Kfψn), (19)

where the first term vanishes asn → ∞ because

0 < (ψn,s, f −1ψn,s) ≤ c−1
− ‖ϕ′

n‖2
L2(R)

= 2c−1
− n−1.

We have employed here (H2) and the normalisation ofχ1. Sinceϕn → 1 point-wise and
from below asn → ∞ andK is supposed to be integrable, the second term in(19)converges
to the negative integral(17) by the dominated convergence theorem. Consequently, there
exists a fixedn0 such thatQ̃[ψn0] is negative and the proof is finished. �

It may not be easy to verify the sufficient condition(18) for a given ambient surfaceA
and reference curveΣ . Nevertheless, it is clear that it holds true for any strip of positive
curvature,K > 0. On the other hand, the condition is not satisfied for the strips in the plane
where, however, it is well known that any non-trivial curvature ofΣ pushes the spectrum
of H below the energyκ2

1. The following result shows that the same holds true for a more
general class of quantum strips, including the flat case too.

Theorem 3. Assume(H1), (H2), (H4),and suppose that

(χ1, Kχ1)H = 0. (20)

If K ≡ 0, we require in addition thatk �≡ 0. Then

inf σ(H) < κ2
1 .
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Proof. Let us start with formal considerations. By virtue of(17), the condition(20)implies
thatQ̃[χ1] = 0. It is the result which one obtains for the strips in the plane. There the usual
strategy is to deform slightly the functionχ1 on a curved part of the strip in order to obtain
a negative value of the functionalQ̃. In particular, letε ∈ R and there exist a real function
φ of compact support inΩ0 such that it belongs to DomQ andQ̃(φ, χ1) is not equal to
zero. Writing

Q̃[χ1 + εφ] = Q̃[χ1] + 2ε Q̃(φ, χ1) + ε2Q̃[φ],

and since the first term at the r.h.s. equals zero, we can chooseε sufficiently small and of a
suitable sign so that the sum of the last two terms is negative.

The result is then justified by using the mollifierϕn from the proof of the previous theorem
in order to regulariseχ1. Since the functionϕn equals one on an interval growing asn → ∞
andφ has a compact support, we can taken sufficiently large so that̃Q(φ, ϕnχ1) does not
depend onn. Hence it suffices to find an appropriate functionφ which verifies the above
properties.

We takeφ(s, u) := j (s, u)2χ ′
1(u), wherej is a non-zero infinitely smooth real function

with a compact support on a region inΩ0 wheref,u does not change sign and it is not
identically zero. Such a region surely exists becausef,u is a continuous function satisfying
(5). Then an explicit calculation yields

Q̃(φ, χ1) = −(jχ ′
1, f,u jχ ′

1) �= 0.

This establishes the proof by virtue of the above considerations. �

Remark 6. If K ≡ 0, we have already mentioned that the idea of the proof belongs to
[14]. Nevertheless, the deformation is not given explicitly there. An explicit deformation
function can be found in[25], however, it gives a satisfactory result only ifK ≡ 0. Ourφ is
inspired by the explicit expression for the deformation function used in[6, Theorem 2.1].

An immediate consequence ofTheorems 1–3is the following corollary.

Corollary 1. Assume(H1)–(H4),and suppose that

(χ1, Kχ1)H ≥ 0. (21)

If K ≡ 0, we require in addition thatk �≡ 0. Then

σdisc(H) �= ∅,

i.e., there exists at least one isolated eigenvalue of finite multiplicity situated belowκ2
1.

6. Non-negative curvature

Since the condition(21) is clearly satisfied for non-negatively curved strips, we shall
suppose thatK ≥ 0 through all this section and investigate this situation in detail. Since
the integral(χ1, Kχ1)H is always well-defined, we may not assume the assumption (H4).
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This includes to use the monotone convergence theorem instead of the dominated one we
have used in the proofs ofTheorems 2 and 3.

An integration of the Jacobiequation (5)yields the following identity:

∀(s, u) ∈ Ω0 : f,u(s, u) = k(s) −
∫ u

0
K(s, ξ)f (s, ξ) dξ. (22)

SinceK is non-negative andf positive, we have immediately

f (s, u) ≤ 1 + u k(s). (23)

Let a‖k‖∞ < 1. Putting the inequality(23) into (22), we get an opposite bound

f (s, u) ≥ 1 + u k(s) − 1
2 u2(1 + 1

3 u k(s)) sup
ξ∈I

K(s, ξ). (24)

It follows from (23) and (24)that the condition (H2) can always be achieved for bounded
curvatures anda small enough. More specifically, a condition on the half-width is expressed
by means of the following inequality:

1

6
a2‖K‖∞ + 2

3 − a‖k‖∞
< 1. (25)

(The supremum norm ofK is taken over the strip only.) We note that the conditiona‖k‖∞ <

1 is a usual assumption in the theory of quantum strips in the plane, while the presence of
K in (25) is due to the curved ambient spaceA.

Furthermore, it is clear from(23) and (24)that the asymptotic condition (H3) is satisfied
if we assume

(H3′) k
∞→0 and K

∞→0.

We refer to the beginning ofSection 4for the exact definition of “
∞→”. The first limit is

the usual assumption on the asymptotic straightness of the strips in the plane, while the
second requires that the surfaceΩ is asymptotically flat. The latter restricts the asymptotic
behaviour of the ambient spaceA.

Finally, we remind that also the basic assumption (H1) can always be achieved for suf-
ficiently smalla if one assumes in addition that the strip does not overlap, cf.Remark 2.
Summing up the above considerations together with the results of the precedent sections,
we conclude by the following theorem.

Theorem 4. LetΩ be a strip of non-negative curvature, i.e.K ≥ 0,which does not overlap
and satisfies the condition(25) together witha‖k‖∞ < 1. If it is not a geodesic strip, i.e.
k �≡ 0 or K �≡ 0, then infσ(H) < κ2

1. If it is in addition an asymptotically geodesic
strip, i.e. (H3′), then the essential spectrum starts aboveκ2

1 andH has at least one isolated
eigenvalue of finite multiplicity.

This theorem generalises the known results for strips in the plane[6] which are a particular
case of the flat strips,K ≡ 0. Moreover, the condition which enables us to localise the
essential spectrum is weaker in the sense that it does not contain derivatives of the curvature
k of the reference curve. However, the most important generalisation concerns the quantum
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strips on non-trivially curved manifolds with a positive curvature. An instructive example
in R

3 is given by the infinite strips on the paraboloid of revolution.

7. Ruled strips

In Section 2.4, we have found an explicit form of the metric(4) in Fermi coordinates for
the flat strips which represent a trivial situation (K ≡ 0). In general, however, it is not at all
an easy problem to findf because it requires to determine the geodesics orthogonal to the
reference curveΣ and integrate the Jacobiequation (5)over these geodesics. Nevertheless,
there is a non-trivial class of strips inR3 where the metric is easy to calculate. For, consider
the stripΩ constructed by segments orthogonal to a space curveΣ . Such a strip is a part of
a ruled surfaceA based onΣ [20, Definition 3.7.4]. As we have mentioned inSection 1,
the HamiltonianH of a quantum particle in the ruled strips had already been investigated
in [2]. The aim of the present paper is just to derive another expression forf , which suits
better to our approach, and discuss some properties ofH . A more detailed spectral analysis
of the ruled strips will be discussed elsewhere.

Let Σ be a simple, infinite curve of classC3 embedded inR3 andp : R → R
3 be its

parameterisation by the arc lengths. We assume that the set{p′, n, b}, wheren andb are the
unit normal and binormal vectors, respectively, is well-defined and forms a right-handed
Frenet triad frame. We use the symbolsκ andτ for the curvature and torsion ofΣ , respec-
tively. One general class of ruled surfacesA is defined viaL : R

2 → R
3,

L(s, u) := p(s) + u[n(s) cosθ(s) − b(s) sinθ(s)], (26)

whereθ : R → R is a function of classC1. The ruled stripΩ is then given by(3) so
that (H1) and (H2) hold true. The mapping(26)does really represent the Fermi-coordinate
chart(2) with the metric of the form(4). Employing the Frenet–Serret formulae, an explicit
calculation yields

f (·, u)2 = (1 − uκ cosθ)2 + u2(τ − θ ′)2, (27)

K(·, u) = − (τ − θ ′)2

f (·, u)2
, k = −κ cosθ. (28)

It is clear that any ruled strip has always a non-positive curvature. Consequently, the suffi-
cient condition(21)is achieved only in the limit case,K ≡ 0, which corresponds toθ ′ = τ .
In that case,Ω is a flat strip which may not be necessary a part of plane, however.

Combining(27)with (28), we get

f (s, u) = 1 + u k(s)√
1 + u2K(s, u)

, (29)

which is an expression of a more transparent structure from the intrinsic point of view of
this paper. At the same time, it is clear from(29)that the condition (H2) holds true provided

a‖k‖∞ < 1 and a2‖K‖∞ < 1, (30)

and the assumption (H1) then follows by the additional requirement thatΩ does not over-
lap. Next, the ruled strip is asymptotically geodesic under the assumption (H3′), which
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implies that infσess(H) ≥ κ2
1 by Theorem 1. However, an open question is whether there

exist bound states below the threshold of the essential spectrum providedK �≡ 0.

8. Concluding remarks

The main interest of this paper was to investigate spectral properties of the Laplacian
−∆, subject to Dirichlet boundary conditions, in the strip regionΩ defined as the tubular
neighbourhood of an infinite curveΣ in a two-dimensional Riemannian manifoldA. The
strategy was to express the operator−∆ under suitable assumptions, (H1) and (H2), in
geodesic coordinates based onΣ . We were mainly interested in the existence of the dis-
crete spectrum. In particular, using some variational techniques, we proved that there are
bound states below the essential spectrum provided the strip is not geodesic,K �≡ 0 or
k �≡ 0, but asymptotically geodesic (H3), and positively curved “in the mean” in the sense
of (21). The latter sufficient conditions hold particularly true for the strips of a non-negative
curvature which were investigated in detail. The obtained results represent a generalisation
of quantum strips in the plane[6].

An interesting problem is to decide whether the discrete spectrum exists for some neg-
atively curved quantum strips as well. The simplest model is probably given by the ruled
strips introduced in the previous section. It is also desirable to investigate the spectrum of
quantum strips on surfaces more precisely using some perturbation and numerical methods.
Another direction of a future research consists in quantum strips which are not asymptoti-
cally geodesic; this may include periodically or randomly curved strips too. Following[5],
we also expect that interesting new features may be brought by a switch of the bound-
ary condition. Apart from the spectral analysis, the scattering problem represents another
challenge facing the theory of quantum strips.

The present paper has been motivated by the theory of quantum waveguides. If one
deals with a curved quantum waveguide in the plane, a reasonable model is given by the
two-dimensional Laplacian in an infinite strip inR

2 [6]. However, we stress here that the two-
dimensional Laplacian in the strip on a curved surface does not represent the actual Hamil-
tonian of a space quantum waveguide. For, a quantum particle in a strip-like waveguide is
forced to move close toΩ by means of a constraining potential (representing a high chemical
potential between different semiconductor materials) but, due to tunnelling effect, it can be
found, even if not too far, outside the strip in the spaceR

3 too. Even if this effect is not impor-
tant for the waveguide in the plane because the motion of the particle in the direction trans-
verse to the plane can be separated, it is not negligible for waveguides on a curved surface.
In this paper, we dealt with a more general situation when the ambient spaceA of the waveg-
uide may not be embedded inR3. Our results are interesting from the mathematical point
of view, however, it is worth to know whether they could be interpreted physically as well.

Acknowledgements

The author wishes to express his gratitude to Professors Pierre Duclos, Pavel Exner,
and Jean Nourrigat for useful discussions. The author would also like to thank the referee
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